Bayesian Regression and Classification Using Mixtures of Gaussian Processes

نویسنده

  • J. Q. Shi
چکیده

For a large data-set with groups of repeated measurements, a mixture model of Gaussian process priors is proposed for modelling the heterogeneity among the different replications. A hybrid Markov chain Monte Carlo (MCMC) algorithm is developed for the implementation of the model for regression and classification. The regression model and its implementation are illustrated by modelling observed Functional Electrical Stimulation experimental results. The classification model is illustrated on a synthetic example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A latent variable Gaussian process model with Pitman-Yor process priors for multiclass classification

Mixtures of Gaussian processes have been considered by several researchers as a means of dealing with non-stationary covariance functions, discontinuities, multi-modality, and overlapping output signals in the context of regression tasks. In this paper, for the first time in the literature, we devise a Gaussian process mixture model especially suitable for multiclass classification applications...

متن کامل

Markov Logic Mixtures of Gaussian Processes: Towards Machines Reading Regression Data

We propose a novel mixtures of Gaussian processes model in which the gating function is interconnected with a probabilistic logical model, in our case Markov logic networks. In this way, the resulting mixed graphical model, called Markov logic mixtures of Gaussian processes (MLxGP), solves joint Bayesian non-parametric regression and probabilistic relational inference tasks. In turn, MLxGP faci...

متن کامل

Nonparametric Approaches to Density Estimation, Regression, Classification, and Inverse Quantum Problems

Bayesian field theory denotes a nonparametric Bayesian approach for learning functions from observational data. Based on the principles of Bayesian statistics, a particular Bayesian field theory is defined by combining two models: a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from traini...

متن کامل

Bayesian nonparametric regression with varying residual density.

We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose ...

متن کامل

Mixtures of Gaussian process priors

Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implementi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002